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The Maslov class of
some Legendre submanifolds

I. VAISMAN
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Abstract. In the paper, by using a differential-geometric machinery, one computes
the Maslov class for: a) Legendre curves on 8°, with respect to any one of the three
classical contact forms of S°; b) Legendre submanifolds for the classical contact
structure of the cotangent unit spheres bundles of a Riemannian manifold N. In
case- b), and if N is flat, the Maslov class is determined by the mean curvature
vector, and it vanishes if the Legendre submanifold is minimal.

1. INTRODUCTION

The Maslov class in an important invariant in symplectic- Lagrangian geometry,
and its applications to mathematical physics. Generally, this is a 1-dimensional
cohomology class m € H!(M, R), associated to a symplectic vector bundle
p :F—>M, and two Lagrangian subbundles Ll, L2 of the former, and it is an
obstruction to the transversality of L1 and L2. If v is a closed curve in M, then
f7m is the Maslov index of v. In the particular case of a cotangent bundle T*N,
the Maslov class and index appear for Lagrangian submanifolds M C T*N, by
taking £ = T(T*N)/M, L1 = V/M, L,= TM, where U is tangent to the fibers of
T*N, and they play a fundamental role in constructing asymptotic solutions
of differential operators on N by the so-called method of the canonical operator.
We refer the reader to [GS] for a general discussion of this subject, and for further
references to the relevant literature.
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The original definition of the Maslov class (index) ammounts to the considera-
tion of the degree of a certain mapping of the circle S!, but among the methods
developed for its computation some are based on differential-geometric machi-
neries [D], [M]. Particularly, it has been remarked by Kamber and Tondeur
[KT] that the Maslov class can be interpreted as an exotic characteristic class,
and in our paper [V2], we have developed this viewpoint by discussing also higher
dimensional Maslov classes and by giving computational formulas by means of
connections.

While the definition of the Maslov classes is more general, computations of
these classes were done mainly for Lagrangian submanifolds of cotangent bundles
(mostly of T*IR" = IR?"). It is the aim of the present note to give some other
geometrically interesting examples of a computation of a Maslov class, and
we describe them shortly here.

The examples are taken from contact geometry. If V2" 1 is a contact manifold
with the contact 1-form 7 [Bl], then, the distribution n = 0 is a symplectic vector
bundle E of rank 2n over M, with the symplectic form d7n. The maximal dimen-
sion of integral submanifolds of E is n, and an n-dimensional integral submanifold
of E is called a Legendre submanifold of V.

Let us assume that we have: a) a Legendre submanifold M of V, and b) a
Lagrangian subbundle C of E. Then (E/M, C/M, TM) is a configuration for
which Maslov classes may be defined. A first example is provided by the 3-di-
mensional unit sphere. S 3 has three contact structures, whose associated canonical
vector fields Ea (@ =1, 2, 3) define the well known parallelization of S3 and any
curve vy tangent to the plane (&, &,) is a Legendre curve with respect to the
contact structure of £, (and so on) [B1]. We shall see that it is easy to compute
the Maslov class (index) of such Legendre curves v with respect to the foliation
C defined by the orbits of (say) 22.

The main example to be considered is the general situation obtained by looking
at the cotangent unit spheres bundle S*N over a Riemannian manifold N. S*N
has a natural contact structure induced by the Liouville 1-form of the cotangent
bundle T*N [Bl]. The fibers of S*N define a Legendre foliation C, and it is
natural to look for the Maslov class of an arbitrary Legendre submanifold M
of S*N with respect to C. In analogy with a result of J.M. Morvan [M], we shall
express this class by means of the mean curvature vector of M.

Needless to say, in this paper we are working in the C™ category. Another
convention which we constantly use is Einstein’s summation convention.

2. GENERAL FORMULAS

Let us start by formulating one of the possible definitions of the Maslov class
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of a triple (£, L, L2) where E is a symplectic vector bundle with the symplectic
vector bundle with the symplectic form £ over a manifold M, and L, L2 are
Lagrangian subbundles of the former. First, we have to choose on E a complex
structure J compatible with the symplectic structure (i.e., Q(Ja,Jb) = §2(a, b)).
Then, if UCM is a trivializing neighbourhood for our bundles, we may look
at fields of frames (eg), (f;U) (x=1,...,2n) of the fibers of E/U which are
unitary for the Hermitian metric determined by g(a, b) = Q(a, Jb), and are such
that eiUG Ll, f,.”e L2 (i=1,...,n). Accordingly, we have complex local bases
for the complex n-dimensional vector bundle (£, J) given by

1
el =—(ef—V—-1J¢l)

V2

2. {
U U_\/ U
o =—= (7 —V=1J£"),

V2

and the transition between these bases is of the form
2.2) oVU=4 ve?

where AU: U — U(n) = the unitary n-dimensional group, and a change in the
choice of the fields of frames multiplies 4, at the left and at the right by ma-
trices belonging to the orthogonal group 0(n). Now, we see that for a covering
of M with such neighbourhoods U, the local mappings 4 glue up to a global
well defined set mapping

(2.3) A(L{, L) : M~ Um) 1 0(m),

where / denotes equivalence of unitary matrices by both left and right multiplica-
tion by orthogonal matrices.

Furthermore, since the determinant of an orthogonal matrix is + 1, there is
a well defined mapping

2.4) det?: U(n)10(n) > S'={zeC/|z|=1}

defined by the square of the determinant of a matrix.
Hence, we obtain a mapping

_ 2 . 1
2.5 ¢L1L2—det cA(L,L):M~>S*,
which is clearly differentiable, and the Maslov class is defined as
dz .
(2.6) m(L, L) =¢} | [———]e H'(M, R),
2] oxvV—12
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where dz/27 vV — 1z is the «volume form» of S? of (2.4), and brackets denote
cohomology classes.

The Maslov class does not depend on the choice of J since any two such ope-
rators J are homotopically related, and it vanishes if L,. L, are transversal sub-
bundles of E since then J may be chosen such that L,=JL,. 1f v S's>Misa
closed curve in M, then the Maslov index of vy is defined by

2.7 mZ}Lz =jm(Ll.L2)=deg(aleLzo'y),
Y

where in the right-hand side we have the degree of the corresponding mapping.
and we see that mZ]L2 is an integer.

Let us also remember the general definition of Maslov classes as exotic charac-
teristic classes [Vz]' Let us look again at the bundles (£, Ll. L2) and at the compa-
tible complex structure J considered above. Let us also look at a covering of M
by trivialization neighbourhoods U, and at local trame fields €y Py @sin formula
(2.1). Using such frames, we may define two kinds of linear connections on £
namely, Ll-orthogonal connections, and Lz‘orthogonal connections. In a precise
manner, (eb) (i=1,...,n)is a g-orthonormal basis of Ll. and there are cor-
responding orthogonal connections in L1 given locally by

(2.8) De, = wle, wll'+wif:0_

Then, formula (2.1) yields complex bases of (£, J), and

2.9 De; = wl’. €

is a connection in (E,J) which we call L,-orthogonal. The L,-orthogonal con-
nections will be defined similarly be means of formulas

(2.10) Dy, = &y, (& + B! = 0),

where p; are defined in (2.1). (It is easy to understand the meaning of these
types of connections in terms of principal bundles of frames and. hence. the
existence of such connections).

Now, the existence of these two kinds of connections leads to exotic charac-
tesitic classes by means of the known comparison procedure due to Bott [Bol.
Namely. let us consider the Chern polynomials

VIT

(2.11) e (4) = ) tr Ab4.

2w

where A € u(n) = the unitary Lie algebra. and A¥4 denotes the kM-compound



THE MASLOV CLASS OF SOME LEGENDRE SUBMANIFOLDS 293

of A. Let V} be a Ll-orthogonal connection given by (2.9), and YZZ be a Lz-ortho-
gonal connection given by (2.10), and denote by (’7r{), (27r’t.') the matrices of these
connections in a common complex unitary basis (bi) of (E,J) (notice that in
(2.9), (2.10), we had different bases for the two connections), and by (ll'I{),
(ZH{) the corresponding curvature matrices. Then, the ck-difference form is
defined by

1
2 1 'I-[ [
Apc =k ck(7r——7r, ,..., Ihdr =
0 (k — 1) times

(2.12)

iy
Iy

e iy ATiE L AT,
kN I h Tk

|

V-1F (! %
= —— )
Qn)kk = D! \
. 1 2
where fl = (Ttlf) is the curvature matrix of the connection (1 —#) V +:V (0 <
< t < 1). The basic property of the form (2.12) is

(2.13) dipe, = e () —c, (D),

and it is known that for odd k = 2k — 1 the right-hand side of (2.13) vanishes.
(See, for instance, [Bo]).
Accordingly, we obtain the cohomology classes

(2.14) M 1, = 181054 ) EHY (M, R),

and we call (2.14) the hth-Maslov class of (L, L) (h=1,2,...). These classes
depend neither on the choice of J nor on that of the orthogonal connections,
and they vanish if Ll and L2 are transversal subbundles, i.e., all these classes
are transversality obstructions [V2].

Particularly, the first class ugle is represented by

R TERT
(2.15) D0y = —— () —m)),

27 !

and the important fact for the present note is [KT]. [D], [V2]
(2.16) !, = —m(,,
1

It is on these formulas that we base the computation of the Maslov class in
the next section.
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3. COMPUTATIONS OF MASLOV CLASSES

In this section we develop the examples described in Introduction.
We shall start with the simple case of curves in S3. Let us identify IR* with
the field Q of the quaternions by means of the mapping

(3.1 (xLx2x3 xYH g =xd+x2i +x3 + x%%,
where (1.1.], k) is the usual basis of Q. Then

(3.2) S*={q €Q/q7 = 1},
and it follows that the vector fields

£ =iq = (—x%x!, —x% 2%
(3.3) ¢,=1Jq =(—x3 x* x!, —x?

£ = kg = (x4, —x%, x2, x)

are in 7"133, and define a field of orthonormal tangent frames on S3 with the
metric induced by IR%.
Let us denote by (171, N, n3) the dual cobasis of (3.3). Then, for instance

3.4) = —xZdxt + x1dx2 —x4dx? + x3 dx*,
1

and it is easy to see that this is a contact form on 53 [B1]. One can write down
similarly the contact forms N, N5 Clearly, the contact distribution El of (3.4)
is spanned by {£,, {,}, and dn, defines on E| the structure of a symplectic vector
bundle of rank 2. Any curve v of S3 which is tangent to E| will be called a £
-Legendre curve. (Of course, we have similarly Ez-Legendre curves and 23—Le-
gendre curves).

Now, following the explanation given in Introduction, let us also look at the
foliation C, of S3 by orbits of §,, which is obviously a &;-Legendre distribution.
Then, if v is a &-Legendre curve on S3 we have along v the symplectic vector
bundle E1/7, and the Lagrangian subbundles L1 = span 52/7. L2 = span v (where
the dot denotes derivative with respect to arc length), and the class m(y)=
= m(Ll,Lz) will be called the Maslov class of . If v is closed fvm(y) is the
Maslov index of 7.

We can compute m(y) straightforwardly from the first definition given in
Section 2, without using connections. First, we shall notice that

(35) J£2=£3’ J£3:_Ez

defines on E a complex structure compatible with the symplectic form £ =
= dTI,/E. and that the associated Hermitian metric is precisely the one induced
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by the Euclidean metric of IR*.
Now, the index i of (2.1) takes only one value, and we may use the bases
(2.1) with

1
€ =£2’ flz'\/—5(52~v—lf3),
(3.6) )
flz’y’ W1='\7‘5(7_V-117)

If 6 denotes the angle of y with £, in E, we have
(3.7) Y=§,c080 + £,;sin 6, Jy=—§&,sin0 + &, cos 0,
and accordingly
(3.8) ¢, =€(cos0 +V—Tsing)=eV-10¢
Hence, the matrix 4, of (2.2) is just e‘/:", and it follows from (2.6) that
m(vy) is the cohomology class defined by ;IT— dé. If v is closed, and we see it as

an immersion vy : S! - $3, we may formulate this result as

PROPOSITION. The Maslov index of a &-Legendre curve of S 3 with respect to
¢, is the degree of the mapping (26) o7 :SY> S where 8 is seen as an angle
mapping. [ ]

Now, we go over to the discussion of our main example.

Let N**1 be a Riemannian manifold with the metric u given by dsZ=
=u, dx®dx?; a,b,...,=1,...,n+1; x*=local coordinates on N. Let Ea
denote the associated natural covector coordinates. Then the cotangent bundle
T*N has the canonical local coordinates (xb, Ea), and the cotangent unit spheres
bundle of N is defined as the submanifold of T*N given by

(3.9) i:S*N={(x, §) € T*N/u®®(x) £ & = 1} C T*N.

It is classical that T*N possesses the Liouville I-form \ = Eadx”, and this
induces a contact 1-form i*\ =7 on S*N [Bl]. The fibers of S*N, which are
defined by x?= const., obviously satisfy the conditions n = 0, dn = 0, which,
for every submanifold tangent to n = 0, are equivalent with the integrability
of the submanifold [Bl]. Hence these fibers define a Legendre foliation which
we shall denote by C* on S*N. Accordingly. if j : M — S*N is an arbitrary (im-
mersed) Legendre submanifold of S*N. we have as in Introduction E/M (given
by 1 = 0 with the symplectic _form dn), L,=¢C *M, L2 = TM, which give rise to
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Maslov classes m(Ll. L2) dg m*M), yl{'le de:f pF(M). It is our aim now to com-
pute m*(M), and get thereby a theorem analogous to the one given by Morvan
for Lagrangian submanifolds of T7*M [M]. [V,].

Let us recall the existence of the following structures of 7*N [YI]. The Riem-
annian connection of N has an associated horizontal distribution H on T*N,
which is defined locally by

(3.10) 9,=d§,—T ¢ dx? =0,

c
where I'-. are Christoffel symbols of u. Thereby, T*N gets an almost product
structure (3, V = the tangent distribution of the fibers of T*N), (dx?, 60) is an
adapted cobasis of this structure, and

0 ) 0
(3.1 X=—+T°%% —  —
T A TR Y-

a

is the corresponding dual basis, where ¥ =span X, , V =span 9/0%, . Now,
duality with respect to u yields another basis of #

(3.12) Y=uX,,

and if we look at the transition relations of these local bases we see that the
formulas

(3.13) JY = — | J — =—-Y*

provide us with a well defined almost complex structure on 7*N. Moreover,
the relations

(3.14) g(Y?, Yb)=g(i,—a—\)=u“b,g(Y”, i):o
3¢, " 0%, 28,
yield a J-Hermitian metric with V L ¥, and whose Kihler form (X, Y)=
= g(JX, Y) is precisely the canonical symplectic form of T*M
(3.15) Q=—dr=dxA6,.

Hence T*N has an almost-Kihler structure which is Kihler (J is integrable) iff

(N, u) is locally flat.
Now, let us come back to S*N. Clearly, TS*N is defined in TT*N by

d(u? ¢ £,) = 0, which is equivalent to

(3.16) u®t 6, =0.
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Hence 3/S*N C TS*N, and, on S*N, we simply refer to this space as . Further-
more, let us denote by A4 the fundamental vector field of the contact structure
of S*N defined by i(A)n =1, i(4)dn =0 [Bl]. We see by a straightforward
checking that

(3.17) A=ut X, =t Y EX,

which proves that ¥ is transversal to the contact distribution E, and that K =
= E N H is a n-dimensional distribution on S*N satisfying n = 0. From (3.15)
we see that it also satisfies dn = 0, hence [B1] it defines a new Legendre foliation
on S*N, transversal to C *. _

Moreover, it is clear that K 1 C* with respect to the metric g of (3.14). But
we also have from (3.12), (3.14), (3.17)

gA,2)=u"tg(X,, £°X,) = u®u, £5° =,57=0 forevery Z={°X_ €K,
since n=0 on K. Hence K 1 4. Now, let us remark that (3.17) also implies

]
(3.18) JA=§ — LS*N.
0§

a

Hence, since J and g are compatible, and JI = V,wegetJK=C*.

Since J is compatible with £ of (3.15) on T*N, it follows from the described
properties that —J is a complex structure compatible with dn on E, and g | E is
the corresponding Hermitian metric, which is the first thing we need in a Maslov
class computation.

Now, in order to go on with the computation, we need adequate connections
as shown in Section 2. For the sake of simplicity, let us assume that u is a locally
flat metric on N. In this case, g is a locally flat Kdhler metric on T*N, its Rieman-
nian connection V is J-compatible, and ¥, V are V-parallel. The hypersurface
S*N has the normal JA4 in T*N, hence we have the Gauss equation

(3.19) Vs Y* = VA Y* + DX *, Y*) JA,

where the star means that we are refering to elements in S*N, V * is the induced
connection, and b* is the second fundamental form. From (3.19), and since V
is V-parallel, we see immediately that C* is V *-parallel, and V* induces on Cc*
on orthogonal connection. This may be used to define the connection V of
(2.12) (if restricted to the Legendre submanifold M, of course).

Now, let us concentrate on the Legendre submanifold M of S*N, and let
(e)) (i=1,...,n) be a Jocal g-orthonormal field of frames in 7M. Then, since
TM is lagrangian in E£. and A 1 E, it follows that (Jel., A) is a normal basis of M
in S*N, and we may write the Gauss equations of M is S*N under the form
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(3.20) V*e, = ul e, +cl(Je) + &, A,

where (#{) are the local 1-forms of the connection V' induced by V* in M, and
cl’.', k; are 1-forms which define the second fundamental form of M in S*N. Since
the induced connection V' preserves thezmetric induced by g in M, it is clear
that we may use V' to get the connection V needed in (2.12).

In orqer to compute Maslov classes we have to find the difference between
V and V expressed in common frames of reference, which we take to be the
complex frames associated to (ei) considered above in (£, —J). These are defined
by (2.1), which in our case is

1
V2

(since our complex structure is —J), and the forms %r{fl of (2.12) are prlecise]y
ul’ We Still have to compute %r{ of the local equations Ve, =%1’.'e]. of ourV, and,
by (3.21) this can be done if we first compute V* (Je,.). Using (3.19), and the
compatibility of V andJ, we may go on as follows

(3.21) 6 =—= (e, + V=1Je)

V*(Je,) = V(Je,) —B,(JA) =J (Ve,) — ;(JA) =
(3.22) =J(V*e, + o, (JA)) —B,(JA) =
= u{(Jej) —c{ej —oA + (k; —BIJA),
where §; and o; are 1-forms defined by
B,(X*) = b*(X*, Je), o, (X*) = b*(X*, ¢)).
Now, since V *(Je;) is tangent to S*N we must have k; = B;» and
(3.23) V*(Je) = ul(Je) —cle; —oyA.

(These are the «main part» of the Weingarten equations of M in S*N. To have
all of the Weingarten equations we should also write down a formula for V *4,
but we are not interested in it. As a consequence of (3.21), (3.20), and (3.23),
we have

(3.24) V*€1=(#{—\/—_1_c{)ej+-\/1—5(Ki—\/-_—7ai)A.

Now let us be more precise about V1 Namely, \} is the complex connelction
on (E, —J) obtained by the extension of V*/C*, and it follows that V can
also be seen as the connection induced by V* on E (since the latter extends
V */C*). Hence, in view of (3.24) we have
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(3.25) m=pl —V—1d.
Therefore
(3.26) 7wl =vV—1d,

and we can use this result for the computation of the Maslov classes.
For the result that we are interested in, we use (2.15) and (2.16), and we
have in view of (3.26)

1
(3.27) m*(M) = — — [¢]]
n

(brackets denote the cohomology class). We shall reformulate this result such
as to make clear its geometric significance.

It follows from (3.20) that the second fundamental form of M in S*N is
given by

(3.28) o(X,Y)= [c}."(X)(Jeh) + KI.(X)A]nj,
where X, Y are in TM, and Y = 'r)fel.. Accordingly, the mean curvature vector
of Min S*N is :
1 n 1 n N
(3.29) ==Y ole,e) = ~ Y (clepe,) + k(e 4).

noi= i=1

Since V* preserves g, and by using (3.20), (3.23), we obtain

(3.30) 0=d(g(e;, Je)) =g(V*e;, Je;) + gle;, V*]e,) = el —cf,

and we may change in (3.29) cl.h(el.) by c,';(el.). On the other hand, (3.20) yields
cjle) =g(Vze, Je),

and since V* has no torsion we obtain c{,(ei) = c{(eh), and therefore H finally
becomes

n n

1 » 1 1
(3.31) H=— iepUe,) + —| Y K (e)a=H+ —( K, ( .))A,
Z Cr eh eh n (Z PN ) Z ex

nopi=1 i=1 nii=1

where H' denotes the orthogonal projection of H on E. Since (ei,—Jei) is a
symplectic basis for the symplectic form dn/E, we have

(3.32) dn=) e A(e*o,

k=1
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where (e*, € 0 J) is the dual cobasis, and a simple computation provides us with
the final result

THEOREM. The Maslov class of the Legendre submanifold M of S*N, where N
is a flat Riemannian manifold, is given by

n
(3.33) m*M)=— [i(H')dn).

i
Particularly, if M is a minimal submanifold of S*N, m*(M) = 0. =

This theorem is analogous to Morvan’s result [M], [D], [Vz],
Final Remarks. 1) We took N flat in order to simplify the exposition. As a
matter of fact, m *(M) can be computed by formula (3.27) in the general case,
but then we must replace V by another connection which can be seen as a sum
of the projections of V on ¥ and V (the second connection of the Riemannian
manifold T*N endowed with the foliation V, as defined in [Vl]). However, (3.33)
cannot be obtained in the general case since this new connection has torsion.

2) The established machinery can also be used to compute higher dimensional
Maslov classes by means of (2.12),(2.14), but we must then use also the curvature
of M. and the Gauss-Codazzi integrability conditions, which makes the compu-
tation complicated, and with not very nice final results.

3) 1t is possible to transfer the above computation of the Maslov class to
Legendre submanifolds of the tangent unit spheres bundle of a Riemannian
manifold, by means of the machinery of the Legendre transformation [AM].
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